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Abstract—The biological and neurological processes 

during the lifespan are dynamic with significant alterations 
associated with different stages of life. The phase and 
coupling of oxy-hemoglobin (∆[HbO]) and 
deoxy-hemoglobin concentration changes (∆[Hb]) 
measured by functional near-infrared spectroscopy 
(fNIRS) are shown to characterize the neurovascular and 
metabolic development of infants. However, the changes 
in phase and coupling across the human lifespan remain 
mostly unknown. Here, fNIRS measurements of ∆[HbO] 
and ∆[Hb] conducted at two sites on different age 
populations (from newborns to elderly) were combined. 
Firstly, we assessed the influence of random noise on the 
calculation of the phase difference and phase-locking 
index (PLI) in fNIRS measurement. The results showed 
that the phase difference is close to π as the noise 
intensity approaches -8 dB, and the coupling strength (i.e., 
PLI) presents a u-shape curve as the noise increase. 
Secondly, phase difference and PLI in the frequency range 
0.01-0.10 Hz were calculated after denoising. It showed 
that the phase difference increases from newborns to 
3-4-month-olds babies. This phase difference persists 
throughout adulthood until finally being disrupted in the 
old age. The children’s PLI is the highest, followed by that 
of adults. These two groups’ PLI are significantly higher 
than those of infants and the elderly (p<0.001). Lastly, a 
hemodynamic model was used to explain the observations 
and found close associations with cerebral autoregulation 
and speed of blood flow. These results demonstrate that 
the phase-related parameters measured by fNIRS can be 
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used to study the brain and assess brain health 
throughout the lifespan. 

Index Terms—Brain development; fNIRS; Phase-locking 
index; Hemodynamic model 

I. INTRODUCTION 
uman brain functions, structures, and physiologies have 
been studied in different age groups, including infants, 

young children, adults, and elderly adults. However, studying 
brain changes across a lifespan and identifying effective 
biomarkers that reflect its trajectory remains challenging [1]. 

Brain development throughout the lifespan is a series of 
complex processes. These processes include (1) physiological 
changes, such as the changes in blood volume/flow/speed and 
oxygenation [2]; (2) neural alteration, such as the changes in 
synaptogenesis in the cortex, the dendritic connections, and the 
white-matter connectivity [3]; and (3) brain functional network 
changes, such as changes in cortex connections [4], brain 
networks [5], and functional complexities [6]. Many brain 
imaging tools, such as electroencephalography (EEG), 
functional near-infrared spectroscopy (fNIRS), functional 
magnetic resonance imaging (fMRI), and 
magnetoencephalography (MEG), have been employed to 
investigate brain development. Among them, fNIRS, as a 
functional neuroimaging tool for neuroscience, has received 
increasing attention in recent years. The merits of fNIRS 
include its (1) high adaptability, (2) non-invasiveness (3) low 
cost, and (4) ease of integration with other imaging tools (e.g. 
fMRI, EEG). This makes it an irreplaceable tool in the field of 
neuroscience [1, 7, 8]. In addition, since the fNIRS has less 
restrictions on subjects and high motion-tolerance, it is an ideal 
imaging tool for studying infants, children, and the elderly in 
daily settings [9, 10]. 

It has been suggested that the phase of oxygenation and 
deoxygenation (hPod), which is the phase difference between 
oxy-hemoglobin (∆[HbO]) and deoxy-hemoglobin 
concentration changes (∆[Hb]), is the key to understand the 
hemodynamic mechanisms and brain function [11]. For early 
brain development, research has shown that hPod in low 
frequency (<0.1 Hz), is correlated with post-natal age (PNA) 
[12, 13]. For example, Taga et al. [7] have used the hPod and its 
phase-locking index (hPodL) to spatially evaluate brain 
development in infants. These studies and previous ones [14] 
all suggest that the phase difference between ∆[HbO] and ∆[Hb] 
is an important parameter for reflecting early brain 
development. Little work has been done thus far to understand 
these phase relationships in other age groups and how they 
change throughout the lifespan. 

Our work is meant to fill this gap by studying the phase 
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difference between ∆[Hb] and ∆[HbO] (i.e. 
Arg(∆[Hb])-Arg(∆[HbO])) in different cohorts of human 
subjects from neonates to the elderlies. Moreover, the 
phase-locking index (PLI), which has been suggested to be 
correlated with the developmental stages of metabolism, blood 
flow, circulatory, and neurovascular functions [7, 12], was 
used to investigate the coupling changes between ∆[HbO] and 
∆[Hb] in different age groups. 

 
It is well-known that phase difference is an important 

biomarker to analyze the hemodynamic characteristics of the 
brain [15, 16]. However, we observed an interesting 
phenomenon that the ∆[HbO] and ∆[Hb] derived from the 
pure-noise channel (with the standard preprocess procedure) 
were anti-phased with each other, as shown in Fig. 1. The 
systematic result derived from seemly random noise is 
alarming. We conducted several simulations to understand the 
impact of noise on the phase calculations. 

Lastly, the dynamic model proposed by Fantini [2] was 
used to identify the key vascular/physiological parameters that 
cause changes in the phase difference. Even though the model 
includes eight parameters that affect the phase relationship 
[17], the most relevant parameters for this study are (1) the 
capillary transit time (t(c)), (2) the venous transit time (t(v)), and 
(3) the dynamic autoregulation cut-off frequency (Hz).  

II. MATERIALS AND METHODS 

A. Participants 
This study included 161 healthy participants involving 

infants, young children, adults, and elderly adults, and it 
covered the ages of a large portion of the human lifespan. The 
data collection was taken place at two different sites. 
1) Infants from Keio University 

Japanese infant data was collected from Keio University, 
Tokyo, Japan. It consisted of data from 21 preterm infants (11 
boys and 10 girls, gestational age (GA) 34 weeks), 20 term 
infants (12 boys and 8 girls, GA 37 weeks) and 27 
3-4-month-olds  infants (10 boys and 17 girls, GA 37 weeks) 
in sleeping status. Apgar score was employed to evaluate the 
health state of early preterm and term infants. The Apgar scores 

of early preterm and term infants at 5 minutes after birth are 
7.60±1.19 and 8.02±1.56, respectively, suggesting fair birth 
condition for the preterm and good condition for the term 
neonates [18]. The Enjoji’s developmental test applied to the 
3-4-month-olds revealed that their developmental quotient 
including motor, social and language abilities are within the 
normal range. Details for all subjects are presented in Table I. 
The subjects’ parents signed the informed consent from the 
Keio University Hospital ethics committee before the 
measurements (No. 20090189). All neonates and infants were 
measured in a dimly lit room while sleeping. The sleeping 
status was judged by their frequent motor activity and rapid eye 
movements.  

TABLE I 
DEMOGRAPHIC CHARACTERISTICS OF THE INFANTS 

characteristics Early preterm Term 3-4 months 
total(boy/girl) 21(11/10) 20(12/8) 27(10/17) 

PMA(wk) 37.9(34-45.1) 39.0(37.4-41.5) 57.1(51.8-61.7) 
GA(mean(min-max))(

wk) 30.1(23-33.4) 38.4(37-41) 39.5(37.4-41.5) 

PNA(day) 54.6(17-137) 4.2(3-7) 122.8(97-146) 
Birth weight 

(mean(min-max)) (g) 
1282.7(463-1

887) 
2851.8(2300-3

936) 
2937.5(2420-3

562) 

Characteristics Children Adults Healthy 
elderlies 

Total(male/female) 21(10/11) 20(12/8) 27(15/12) 
Age(mean(min-max)) 

(years) 8.1(6-11) 23.2(19-27) 63.3(58-77) 

BMI(mean(min-max)) 17.2(16-19) 21.3(19-24) 20.9(18.5-23) 

The ETG-4000 NIRS system (Hitachi Medical Corporation) 
measured the relative fluctuations in ∆[HbO] and ∆[Hb] 
(millimolar(mM)). The fNIRS probes used on the early preterm 
and term neonates were different from those of 3-4-month-olds 
infants. The fNIRS probe used on neonates included 46 
source-detector channels. The layouts of the probes on a 
standard brain model are shown in Figs. 2 (a)-(c), where the 
crosses and the empty circles are the positions of the light 
sources and the detectors to identify the channels. The source 
and detector mounted on the left and right temporal regions 
were set of two 12 channels arrays (3 sources and 3 detectors), 
the frontal region was set of one 22 channels array (3 sources 
and 5 detectors). The fNIRS probe used on the 3-4-month-olds 
infants includes 44 source-detector channels. The layouts in 
different views are shown in Figs. 2 (e)-(g). Two sets of 22 
channels with 3 sources and 5 detectors arrays were used to 
mount the frontal, left, and right temporal regions. The 
corresponding locations of the 46 and 44 fNIRS channels are 
shown in Figs. 2(d) and (h), respectively. The positions of the 
probe arrays are selected according to the international 10-20 
system [19]. 

The anatomical areas covered by fNIRS were divided into 3 
regions for spatial investigation: frontal cortex, left temporal 
cortex, and right temporal cortex. The distance between the 
source and detector was approximately 2 cm. The fNIRS 
sampling rate was 10 Hz and the wavelengths of the 
near-infrared lights were 695 nm and 830 nm, respectively. We 
used the NIRS-SPM toolbox to convert the light intensity into 
∆[Hb] and ∆[HbO] by using the modified Beer-Lambert Law 
[20]. The differential path-length factor (DPF) was set as 
6.1718 and 5.5374 for the two wavelengths.  

>
³

³

 
Fig. 1. The phase difference and coupling strength calculation are based on 
two noise light intensity signals. (a) Two light intensity waves of 785 nm 
and 830 nm were recorded from the fNIRS system. (b) The ∆[Hb] and 
∆[HbO] signals were calculated from the light intensity signals based on 
the modified Beer–Lambert law. (c) Filtered ∆[Hb] and ∆[HbO] signals in 
the 0.01-0.1 Hz frequency band. (d) Phase difference between 
Arg(∆[Hb])-Arg(∆[HbO]) and PLI for the two signals in (c). 
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2) Children, adults, and the elderly from Beijing Normal University 
The fNIRS data from children to elderly adults were 

collected from Beijing Normal University, Beijing, China. The 
study enrolled 68 normal healthy participants-21 children (aged 
6-11, 10 males, 11 females), 20 adults (aged 19-27, 12 males, 8 
females), and 27 healthy elderly adults (58-77, 15 males, 12 
females). All subjects were right-handed Han Chinese with 
normal or corrected-to-normal vision. The detailed information 
of the children and adults were described in the study of [21], 
while the healthy elderlies were presented in the study of [22]. 
All these participants were considered healthy with normal 
weight. The body mass index (BMI) with the ranges of 16-19 
for children and 18.5-24 for adults (including elderlies) were 
used as enrollment criteria. An informed consent form was 
signed before the experiments by either the subjects or their 
parents (for minors). The experiments were approved by the 
Institutional Review Board of Beijing Normal University, 
China. The participants with the following symptoms were 
excluded for analysis: (1) depression (Hamilton depression 
rating scale ≥ 24 points); (2) histories of stroke, nervous system 
diseases, and other systemic diseases that can cause cognitive 
impairment; (3) histories of psychosis or congenital mental 
growth retardation. The neuropsychological tests used for the 
healthy elderlies are the Chinese version of mini-mental state 
examination (MMSE), the Beijing version of Montreal 
cognitive assessment (MoCA), clinical dementia rating (CDR), 
and so on [22]. Lastly, additional enrollment criteria for healthy 
elderlies were employed. They are: (1) no complaint of 

memory or other cognitive impairment, (2) CDR score is 0, and 
(3) no severe visual or auditory impairment.  

The recording process has been described in detail by Cai 
et al. [14]. A continuous wave near-infrared optical imaging 
system (CW6, TechEn Inc., MA, U.S.A) recorded the 
hemodynamic response in a resting state. Twelve transmitters 
and 24 receivers (forming 46 measurement channels) with a 
source-detector distance of 3.2 cm were placed on a stretchable 
cap covering most of the head. The layouts are shown in Figs. 
2(i)-(k). The corresponding locations of 46 channels as 
reference to the international 10-20 system are shown in Fig. 2(l) 
and they covered the frontal, parietal, temporal, and occipital 
cortices regions. The wavelengths of the light are 690 nm and 
830 nm, respectively. The sampling rate of the system is 50 Hz 
and the duration of the experiment was approximately 11 
minutes, while the subject was in a relaxed, eyes closed, but 
awake state. 

We used the Homer2 to convert the light intensity into 
∆[Hb] and ∆[HbO] by using the modified Beer-Lambert Law 
[15]. The extinction factors proposed by Gratzer [23, 24] were 
used for the calculation and the DPF was set as 6.0 in all these 
participants. More details about the DPF could be found in Refs 
[25, 26]. Because we analyzed the phase difference and 
coupling of ∆[Hb] and ∆[HbO] rather than the hemodynamic 
oscillation itself, the DPF and extinction factor used have little 
effect on the results [5]. 

 
B. Data Preprocessing 

This study calculated the log-power of the ∆[HbO] with 
the multitaper spectral method in the Chronux toolbox 
(version 2.11; hppt://chronux.org/. Accessed July 15, 2018). 
Signal quality is critical in analyzing the phase of 
hemodynamic oscillations. Therefore, the following two 
quality control steps were conducted: 1) The NIRS channel 
without the cardiac component (~1Hz) in the spectrum was 
regarded as the noise signal and was removed from further 

analysis. We excluded the participant with over 20% bad 
channels (i.e., without the cardiac signal or only with random 
noise) from further analysis (only 2 participants were excluded 
due to this reason). For the remaining participants, if the 
proportion of the bad channels is less than 20% (5 participants 
were in this situation), the bad channels were excluded from 
further statistical analysis. 2) The kurtosis-based Wavelet 
Filtering (kbWF) was used to correct motion artifact [27]. 
Based on the previous study [27], we set the kurtosis threshold 

 
Fig. 2. Schematic arrangement of fNIRS channels for neonates (preterm and term infants), children, adults, healthy elderlies. (a)-(c) Three views (left, front, 
and right) of fNIRS probe arrays over a brain model with 46 channels for neonates (preterm and term infants). (d) Anatomical areas covered by 46 fNIRS 
channels. The colors represent the different cortical regions. (e)-(g) Three views of 44 channel fNIRS probe arrays for 3-4-month-olds infants. (h) 
Anatomical areas covered by 44 fNIRS channels similar to those in (d). (i)-(k) Three views (right, top, and left) of fNIRS probe arrays over a brain model 
with 46 channels for children, adults, and the healthy elderly. The electrodes cover the frontal, temporal, parietal, and occipital regions. (l) Spatial position of 
each measurement channel. 
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as 3.3, a Daubechies 5 (db5) wavelet for the discrete wavelet 
transformation, and decomposition level as 10, in the data 
preprocessing. The detailed motion-correction processes were 
shown in Fig. S1 (supplement Part I).  

After motion correction, all data were resampled to 2 Hz 
before the low-frequency hemodynamic components (i.e. (1) 
0.01-0.05 Hz; (2) 0.05-0.1 Hz and (3) 0.01-0.1 Hz). We adopted 
2 Hz for  redundancy [28] and to be consistent with our 
previous study [13].  The low-frequency signals were extracted 
with a zero-phase digital band-pass filter (Matlab function of 
filtfilt.m, butterworth order=3).  

C. Time-varying Arg(∆[Hb])-Arg(∆[HbO]) and PLI 
After band-pass filtering, the time-varying 

Arg(∆[Hb])-Arg(∆[HbO]) and PLI were calculated to measure 
the phase difference and coupling of ∆[HbO] and ∆[Hb]. We 
note that this phase difference (∆[Hb] relative to ∆[HbO]) is the 
opposite of the one that defines hPod (∆[HbO] relative to 
∆[Hb]). Also, the hPod measurement regarded the testing state 
as a static, not a dynamically fluctuating state. In this study, a 
fixed epoch length of 120 s and 90% overlap was used to derive 
the variation of phase difference over time to characterize the 
dynamic hemodynamic processes. The detailed calculation 
processes are described below for each range of the 
low-frequency hemodynamic oscillations. 
(1) The ∆[HbO] and ∆[Hb] recordings from one channel were 
divided into n windows with the overlap of 90%, where the 
window length was 120 seconds, For a recording length of l, the 

number n equal to , where 

the WL and overlap values are 120 and 0.9, respectively.  
(2) The ∆[HbO] and ∆[Hb] segments were referred to as  

and , respectively. Based on the Hilbert transform, the 
signals’ instantaneous phases (IP) were: 

 and      (1) 

where  and  were the analytic signal 

representation of  and , respectively. 
(3) Then, the phase difference between  and  

( ) was calculated and projected in . 
(4) The PLI measurement was defined as: 

                        (2) 

where N was the length of  and . The PLI was 
bounded between 0 and 1.  

Lastly, for one channel we can get n phase difference and 
PLI values. The number of n based on the testing duration time. 
To get a consistent statistical comparison between different age 
groups, we selected the samples with a testing time of more 
than 3 minutes for statistics. 

D. Statistical analysis 
This study investigated the phase difference and coupling 

characteristics of hemodynamics with brain development and 
aging. We used the violin plot and box plot to show the 

distribution of the samples at channel-based and region-based 
statistical analysis, respectively. Given that the phase 
difference indices are angle values, a circular statistics toolbox 
was used for statistical analysis [29]. The parametric 
Watson-Williams multi-sample test was used to determine 
significant differences of Arg(∆[Hb])-Arg(∆[HbO] between 
groups [13]. For the PLI, a Lilliefors test determined whether 
the values had a normal distribution. The Kruskal-Wallis test 
and multiple comparison tests with Bonferroni correction were 
performed to determine significant differences between the 
indices of different age groups. A two-way repeated analysis of 
variance (two-way ANOVA) was applied to assess the 
interactions and the main effects on the two dependent 
variables (Arg(∆[Hb])-Arg(∆[HbO], and PLI) for the two 
conditions: age group and brain region. After obtaining the 
interactions and the main effects on the two dependent 
variables, a post-hoc test with Bonferroni correction 
determined the significant difference of the phase difference 
(Arg(∆[Hb])-Arg(∆[HbO])) and PLI indices among various 
brain regions (i.e., frontal, left temporal, and right temporal 
regions) in each age group (i.e., preterm infants, term infants, 
3-4-month-olds  infants, children, adults, and healthy elderly). 
Adjusted p-values below 0.05 were considered to indicate 
statistically significant difference. The same statistical tests 
were performed at the channel-based level and region-based 
level, respectively. In the Figs and tables, p<0.05, p<0.01, and 
p<0.001 are marked with ‘*’, ‘**’, and ‘***’, respectively. 

E. Impact of random noise on phase calculation 
In order to analyze the noise effect on the anti-phase trend 

of ∆[Hb] and ∆[HbO] based on the modified Beer-Lambert law 
in more detail, we considered two scenarios.  

For the first one, the random noise of varying intensities 
was added to the raw optical density signals. We selected the 
raw optical density signals that had distinct heart rate 
information and assumed those signals are relatively “clean” 
signals. For the noise channel, we set the source and detector in 
a dark environment away from the subject. So that we can get a 
pure noise signal that doesn’t contain hemoglobin signals. We 
added the noise to the raw optical density signals with the noise 
coefficient from 0 to 1. To obtain the phase difference changes 
at different noise levels, we set the step to 0.01 in the range of 0 
to 0.1 and 0.1 in the range from 0.05 to 1. Finally, the 
signal-to-noise ratio (SNR) of the signal in different levels of 
noise was calculated by dividing the energy of raw optical 
density by noise energy. 

For the second scenario, we employed a mathematical 
model to simulate the real optical density signals, which can 
ensure that there is no noise in the signals. Two sinusoidal 
signals with a low frequency of 0.01 Hz modulated by a 
frequency of 1 Hz under a sampling rate of 10 Hz numerically 
simulated the noise effect on the phase calculation. The 
formulas are described as follows: 

  (3) 

Gaussian random noise was generated by the MATLAB 
function randn.m and added to the signals (  and ). The 
noises’ amplitudes that added to the two sinusoidal signals were 
set as 8 and 4, respectively. Similar to the scenario 1, the 
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coefficient of noise adds in signal  and  from 0 to 0.1 at 
steps of 0.01 and from 0.1 to 1 at steps of 0.05. Different levels 
of the SNR were calculated dividing the signal energy by the 
noise energy. 

III. HEMODYNAMIC MODEL  
This study employed a recent hemodynamic model [30] to 

explain the phase difference between ∆[Hb] and ∆[HbO] that 
are associated with brain development and aging. This may 
shed light on the underlying physiological changes. This model 
is a dynamic extension of the steady-state hemodynamic model 
previously proposed by Fantini [31]. Using the previous model, 
Watanabe et al. [12] found that the partial blood volume 
contributes to the in-phase, whereas, the partial pressure of 
oxygen, oxygen utilization rate, and the speed of blood flow 
contributes to the anti-phase of ∆[HbO] and ∆[Hb], 
respectively. The phasors that describe the oscillations of 
∆[Hb] and ∆[HbO] are termed  and , respectively, 

and are related to ,  and  (the 
phasors representing the oscillations of cerebral blood volume 
(CBV), cerebral blood flow (CBF), and cerebral metabolic rate 
of oxygen (CMRO2), respectively), according to the following 
equations: 

      (4) 

 (5) 

We define also the ratio of ∆[Hb] and ∆[HbO] phasors as: 

            (6) 

In Eq.(4) the superscripts “(a)”, “(v)” and “(c)” indicate 
the contributions from arterial, venous, and capillary 
compartments, respectively, for oxygen saturation ( , , 
and ), baseline cerebral blood volume ( , 

, ) in units of  , and oscillations 
of cerebral blood volume ( , ) We note that with 
lower case characters we indicate unitless phasors (that 
describe oscillations normalized to a baseline value). On the 
contrary, HbO and Hb phasors express absolute changes (not 
normalized) and are expressed in units of micromolar. Finally, 

 and  are the capillary and venous 
complex transfer functions (which depend on the capillary and 
venous transit times),  indicates the Fahraeus factor, the 
ratio of capillary-to-large vessel hematocrit, and  is the 
concentration of total hemoglobin in blood [17, 30]. 

We used the hemodynamic model to calculate the phase 
difference Arg(∆[Hb])-Arg(∆[HbO] with various values of 
capillaries ( ), and veins ( ) transit times, and 
autoregulation cutoff frequency[2, 17, 30]. We note that the 

model predicts negative values for Arg(∆[Hb])-Arg(∆[HbO] 
(i.e. oscillations of Hb that are lagging oscillations of 
oxyhemoglobin). However, phase angles are defined to within 
a multiple of 2p, and the experimental results reported here are 
projected in the interval [0, 2p]. The relevant findings of 
changes in the relative phase of ∆[Hb] vs. ∆[HbO], specifically 
an increase with age, are independent of the choice for the 
phase sign: it corresponds to more positive phase values (in the 
representation of experimental results) or less negative phase 
values (in the representation of the hemodynamic model). 

IV. RESULTS  

A. The effects of the anti-phase trend of ∆[Hb] and ∆[HbO] 
based on the calculation of the modified Beer–Lambert law 
with the influence of noise  

Firstly, we analyzed the underlying effect of modified 
Beer-Lambert law to the anti-phase trend of ∆[Hb] and ∆[HbO]. 
The concentration changes of ∆[Hb] and ∆ [HbO] are 
commonly obtained from the following equation: 

                (7) 

                (8) 

Where  is the extinct coefficient of Hb at wavelength ; 

 is the extinct coefficient of HbO at wavelength ; we 
employed the extinction factor proposed by Gratzer [23, 24] for 
converting the light intensity into ∆[Hb] and ∆[HbO] by using 
the modified Beer-Lambert Law [20].   is the change in 
optical density at the wavelength  (from the baseline),  is 
the DPF at wavelength , and L is the distance between source 
and detector. 

From equations 7 and 8, we can see that ∆[HbO] is 

associate with  , while ∆[Hb] is 

associated with  (i.e.,  have 

changed the signs). If  and  are random noise, 
the averaged phase of ∆[HbO] and ∆[Hb] is tended to be π (or 
-π), as demonstrated in Fig. 1. 

We analyzed the influence of the random noise on the 
phase difference and PLI under two different scenarios. The 
detailed processes and results were shown in the supplement 
Part II. The simulations showed that the random noise is not a 
negligible factor for the phase difference and PLI calculation.     

Also, the impact of the device difference was considered 
in this study. The detailed contents were presented in the 
supplement Part III.  

B. Changes in phase difference with brain development 
Fig. 3 shows examples of two types of ∆[HbO] vs. ∆[Hb] 

oscillations patterns. In Fig. 3(a), the hemodynamic oscillations 
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of ∆[HbO] and ∆[Hb] are derived from an adult subject. The 
data length of this epoch is 100 s with a 0.01-0.1 Hz frequency 
band. The phase difference between ∆[HbO] and ∆[Hb] is π 
(see Fig. 3(b)). Fig. 3(c) presents another oscillation pattern, 
derived from one preterm neonate with a time length of 100s in 
the same frequency band. As shown, the phase difference is 
approximately π/2 for this subject (see Fig. 3(d)). 

   
To investigate changes in the phase difference with brain 

development and aging, the time-varying phase differences 
(i.e., Arg(∆[Hb])-Arg(∆[HbO])) were calculated for each age 
group (early preterm, term, 3-4-month-olds infants, children, 
adults, and the elderly) in every channel. The post-natal age 
(PNA) for early preterm and term was 54.6 (17-137) days and 
4.2(3-7) days, respectively. The variation ranges of the phase 
differences in six individual subjects from different age groups 
were calculated and showed in Fig. 4. The variation ranges (red 
sector) for the early preterm and term are close to  (see in 
Fig. 4(a) and 4(b)). While the phase difference ranges in most 
channels in 3-4-month-olds infants are close to  (Fig. 4(c)). 
Similar phenomena can also be found in the children (6 years) 
and adults (27 years) (see Fig. 4(d) and 4(e)). It is interesting 
that the phase difference variations in the healthy elderly (Fig. 
4(f) have a wider range than other subjects (Fig. 4(f)). The 
mean phase differences (blue line in the red sector) in some 
channels are close to . 

The distribution of the time-varying phase differences 
with all the channels (more than 5 segments in one channel’ 
recording) in each age group (in 0.01-0.05 Hz) is shown in Fig.     
5. As shown, the most phase difference between the early 
preterm and term was within the range of . Whereas, 
the values in the 3-4-month-olds  infants, children, and adult 
groups were around  (evenly distributed around ). Among 
the healthy elderly, the values were broadly distributed within 
the range of , indicating greater variability. In addition, 
the phase difference indices for these groups in 0.05-0.1 Hz and 
0.01-0.1 Hz are shown in Figs. S5 and S6 (see in Supplement 
Part IV (1)) with similar observations. 

The mean and SD of the phase difference and PLI for all 
age groups in the 0.01-0.05 Hz, 0.05-0.1 Hz, and 0.01-0.1 Hz 
frequency bands are present in Tables II and III, respectively. 
As shown, the Arg(∆[Hb]) leads the Arg(∆[HbO]) by 

approximately 1.78 and 1.32 rad (mean), in the 0.05-0.1 Hz 
frequency band for early preterm and term infants, respectively. 
Of course, a lead by x radians is equivalent to a lag by 2  -x 
radians, and we observe again that it was argued that ∆[Hb] 
should be interpreted as lagging ∆[HbO]. The term infants 
(with a PNA of 4.2 days (mean value)) had significant in-phase 
tendency compared with those of the early preterm (with a PNA 
of 54.6 days) and 3-4-month-olds infants (with PNA of 122.8 
days (mean value)) in the 0.05-0.1 Hz, 0.05-0.1 Hz, and 
0.01-0.1 Hz frequency bands. This finding indicated that the 
phase difference was mainly correlated with PNA age (i.e., at 
the time of the measurement) in the infant groups, regardless of 
the infants’ status (preterm or term). Lastly, the variations of 
the phase difference in healthy elderlies are larger than those of 
adults.  

TABLE ! 
THE STATISTICS OF ARG(∆[HB])-ARG(∆[HBO]) WITH DIFFERENT AGE 

GROUPS (EARLY PRETERM, TERM, 3-4 MONTHS, CHILDREN, ADULTS, AND 
HEALTHY ELDERLIES) IN 0.01-0.05 HZ, 0.05-0.1 HZ AND 0.01-0.1 HZ 

 0.01-0.05Hz 0.05-0.1Hz  0.01-0.1Hz  
 Mean ± SD Mean ± SD Mean ± SD 

Early preterm 2.19±0.60 1.78±0.46 2.08±0.50 
Term 1.99±0.72 1.32±0.46 1.85±0.58 

3-4 months 2.75±0.62 2.56±0.49 2.71±0.54 
children 2.87±0.23 2.87±0.21 2.86±0.20 
Adults 2.53±0.63 2.37±0.92 2.49±0.64 

Healthy elderlies 2.33±0.94 2.28±1.89 2.14±1.08 
TABLE " 

THE STATISTICS OF PLI WITH DIFFERENT AGE GROUPS (EARLY PRETERM, 
TERM, 3-4 MONTHS, CHILDREN, ADULTS, AND THE HEALTHY ELDERLIES) IN 

0.01-0.05 HZ, 0.05-0.1 HZ AND 0.01-0.1 HZ 
 0.01-0.05Hz 0.05-0.1Hz  0.01-0.1Hz  
 Mean ± SD Mean ± SD Mean ± SD 

Early preterm 0.58±0.18 0.63±0.18 0.55±0.17 
Term 0.58±0.16 0.65±0.19 0.55±0.15 

3-4 months 0.60±0.19 0.62±0.20 0.57±0.19 
Children 0.79±0.19 0.79±0.19 0.77±0.20 
Adults 0.73±0.22 0.70±0.25 0.68±0.25 

Healthy 
elderlies 0.53±0.14 0.56±0.17 0.48±0.15 

The PLI is a parameter that measures the coupling strength 
of ∆[Hb] and ∆[HbO]. The results show that the children and 
adults have higher values than the rest of the participants, which 
might indicate that the coupling strengths of ∆[Hb] and ∆[HbO] 
slightly increase with brain development and decrease with 
brain aging. 

The significance of the phase difference indices among 
different age groups is calculated with the Watson-Williams 
multi-sample test. The results showed that from 0.01-0.05 Hz, 
the phase differences are significantly different among all age 
groups (Table S3 in Supplement Part IV (2)). Whereas, for 
0.05-0.1 Hz and 0.01-0.1 Hz, not all age groups show a 
significant difference from each other (Tables S4 and S5 in 
Supplement Part IV (2)). This means that cerebral vascular 
development might be frequency-dependent. Also, the 
Kruskal-Wallis test and multiple comparison tests were used to 
determine the PLI significance for different age groups. The 
groups of children and adults had significantly higher values 
than those of the infants and the elderly adults for the 0.01-0.05 
Hz and 0.01-0.1 Hz frequency bands (p<0.001) (Tables S6-S8 
in Supplement Part IV (2)). However, there were no significant 
differences among the infants (i.e., early preterm, term, and 3-4 
months) (Tables S6-S8 in Supplement Part IV (2)). It may 

π/2

π

π/2

[ ]π 2,π

π π

[ ]0,π

p

 
Fig. 3. ∆[HbO] and ∆[Hb] oscillations. (a) ∆[HbO] and ∆[Hb] signals 
(0.01-0.1 Hz) recorded from the adults. (b) Vector representation of 
Arg(∆[Hb])-Arg(∆[HbO]) and PLI (length of vector) for the signals in 
(a). (c) ∆[HbO]and ∆[Hb] signals (0.01-0.1 Hz) recorded from the 
preterm. (d) Vector representation of Arg(∆[Hb])-Arg(∆[HbO]) and 
PLI for the signals in (c). 
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indicate that, unlike phase difference, PLI might not be as 
sensitive in the first few months of life. 

Furthermore, the spatial specificity of selected regions 
(i.e., frontal, left temporal, and right temporal cortices) of phase 
difference and PLI were calculated for all age groups. The 
regions were chosen due to the overlapping coverages of the 
fNIRS probes on all participants. The averaged phase 
difference values and PLIs in each channel were regarded as 
samples for statistics. Fig. 6 shows the spatial distribution of 

phase difference and PLI in the 0.01-0.05 Hz frequency band in 
the frontal, left temporal, and right temporal cortices. The 
violin plots of phase difference and PLI in the 0.05-0.1 Hz and 
0.01-0.1 Hz are shown in Figs. S7 and S8 (see in Supplement 
Part IV (3)), respectively. The width of each ‘violin’ reflects the 
distribution of these indices in each region at every age group.  
The mean ± SD of the phase difference and PLI range in each 
cortical region for each frequency band are presented in Tables 
S9 and S10 (see in Supplement Part IV (3)). 

 

 
The sample numbers of phase differences for all ages 

that were employed for statistical analysis in three frequency 
bands are 3731, 3834, 3729, respectively. For the phase 
difference measure, a two-way ANOVA test showed that the 

 
Fig. 4. The variation of time varying Arg(∆[Hb])-Arg(∆[HbO]) in different subjects in different age groups. (a)-(c) are the time varying phase difference in 
spatial scale in the subjects with the age of PNA=17, 5 and 132 days. The blue lines in the red sectors and the range of red sectors are the mean and SD values of 
the Arg(∆[Hb])-Arg(∆[HbO]) during time course in each channel. Similar as (a)-(c), the (d)-(f) are the variation of time varying Arg(∆[Hb])-Arg(∆[HbO]) in the 
subjects with the age of 6 years, 27 year, and 70 years. 

 
Fig. 5. Arg(∆[Hb])-Arg(∆[HbO]) distribution in each channel for all age groups in the 0.01-0.05 Hz frequency band. (a) Arg(∆[Hb])-Arg(∆[HbO]) 
distribution with every channel for early preterm infants (left part) and proportion of Arg(∆[Hb])-Arg(∆[HbO]) in each phase bin (right part). (b)-(f) similar 
measurement of the Arg(Hb)-Arg(HbO) for the term infants, 3-4-month-olds infants, children, adults, and elderly participants. 
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main effects with the factors conditions of age groups (n=6: 
preterm, term, 3-4 months, children, adults, and the healthy 
elderlies) and brain regions (n=3: frontal, let temporal, and right 
temporal cortex) were both significant for 0.05-0.1 Hz and 
0.01-0.1 Hz. Also, the interactions of the two factors were 
significant only in 0.05-0.1 Hz (F (10, 3816) =3.490, p=0.000). 
All results of the two-way ANOVA tests are shown in Table 
S11 (see in Supplement Part IV (4)). The statistical analysis of 
significant differences between two of the three regions 

(frontal, left temporal, and right temporal) for every age group 
in the 0.01-0.05 Hz, 0.05-0.1 Hz, and 0.01-0.1 Hz frequency 
bands are presented in Table S12(see in Supplement Part IV 
(4)). As shown, there were no significant differences for most 
age groups. For each cortical region, the significant differences 
are obvious among infants’ groups (preterm, term, and 3-4 
months), but not for the age groups from children to healthy 
elderly (Tables S13-S15 in Supplement Part IV (4)). The 
significant difference is also frequency-dependent.   

The results of the two-way ANOVA tests for the PLI 
measures are shown in Table S16 (see in Supplement Part IV 
(4)). There are significant interaction effects in all age groups in 
the frequency band of 0.01-0.1 Hz, 0.05-0.1 Hz, and 0.01-0.1 
Hz. This indicates that the PLI was significantly related to the 
cortical region and age. The main effects of age were 
significant (p=0.000 for all frequency bands), indicating that 
the PLI values in different age groups had a significant 
difference. The statistical tests with Bonferroni correction 
showed that the spatial differences were not obvious within the 
groups (Table S17 in Supplement Part IV (4)). 

There were significant differences between the children, 
adult, and healthy elderly age groups for most cortical regions 
(Tables S18-S20 in Supplement Part IV (4)) for the PLI 
measurement. For example, the values of children’s PLIs in 
most cortical regions are significantly higher than those of the 
infant and healthy elderly groups (p<0.01). This finding 
indicates that PLI is sensitive to brain development. However, 
it is not sensitive during the first few months of life (i.e. early 
preterm, term, and 3-4-month-olds  infants). This is not the case 
for phase changes.  

The statistical analysis of Arg(∆[Hb])-Arg(∆[HbO]) and 
PLI in group-level that based on the averaged indices of a 
subject in each cortical region were presented in Supplement 
Part V. 

C. Use of the hemodynamic model for the physiological 
interpretation of the data 

The hemodynamic model assumes a high pass filter 
relationship between the changes in blood flow velocity and 

changes in perfusion pressure according to the known dynamic 
cerebral autoregulation mechanism. The high pass filter is 
characterized by a cutoff frequency [2], which is related to the 
effectiveness of the autoregulation mechanism: the higher the 
cutoff frequency, the better the functioning autoregulation. We 
analyzed the changes in Arg(∆[Hb])-Arg(∆[HbO]) by 
increasing the autoregulation cutoff frequency from 0.01 to 
0.15 Hz for different capillary (t(c)) and venous (t(v)) transit 
times (see Fig. 7). We note that the model predicts a phase lag 
of ∆[Hb] with respect to ∆[HbO], therefore 
Arg(∆[Hb])-Arg(∆[HbO]) has a negative value. For example, 
Fig 7(a) shows the Arg(∆[Hb])-Arg(∆[HbO]) changes with 
autoregulation increased from 0.01 to 0.15 Hz. The four curves 
represent the Arg(∆[Hb])-Arg(∆[HbO]) values under the 
conditions of 1) t(c)=0.4 s, t(v)=1 s, 2) t(c)=1.4 s, t(v)=3s, 3) t(c)=0.4 
s, t(c)=3 s, and 4) t(c)=1.4 s, t(c)=1 s, respectively. As shown in 
Fig. 7, the Arg(∆[Hb])-Arg(∆[HbO]) increases (i.e. becomes 
less negative) with higher cutoff frequency (i.e. better 
autoregulation). This is consistent (at least qualitatively) with 
the experimental data of  Fig. 5 and Table II where the phase lag 
between ∆[Hb] and ∆[HbO] increases from early preterm and 
term infants (~-240°) to 3-4-month-olds infants and adult 
(~-195°). This result according to the hemodynamic model can 
be interpreted as indicative of a developing autoregulation 
mechanism. It is worth pointing out that Fig. 7 also shows that 
an increase in blood flow (i.e. a decrease in t(c)) would also 
result in an increase in the relative phase of ∆[Hb] vs. ∆[HbO] 
oscillations. A similar effect on Arg(∆[Hb])-Arg(∆[HbO]) (but 
not as strong as t(c)) is caused by a decrease in t(v), which is also 
linked to an increase of blood flow.  

 
Fig. 6. Violin plots of the Arg(∆[Hb])-Arg(∆[HbO]) and PLI for different age groups in different spatial areas. (a)-(c) Violin plots of the 
Arg(∆[Hb])-Arg(∆[HbO]) for different age groups in the frontal, left temporal, and right temporal areas. The Arg(∆[Hb])-Arg(∆[HbO]) frequency band is 
0.01-0.05 Hz. The black line and red line represent the mean and median of the indices, respectively. (d)-(f) Violin plots of the PLI with the age groups in the 
frontal, left temporal and right temporal areas in 0.01-0.05 Hz. 
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V. DISCUSSION 
Brain structure and functions have been studied extensively 
using fMRI and fNIRS [32, 33]. However, these studies have 
been limited to certain age groups. Longitudinal research on 
brain development over a lifespan is rare [34, 35]. In this study, 
the influence of the noise on the phase difference was first 
investigated. Then, we analyzed the phase difference and 
coupling of ∆[Hb] and ∆[HbO] in age groups from newborn to 
elderly. The phase difference and PLI measurements were 
believed to represent the changes in cerebrovascular 
physiology. To validate it, a hemodynamic model was used to 
interpret the underlying mechanism associated with the phase 
difference changes. To our knowledge, this is the first study to 
investigate phase difference and coupling of ∆[Hb] and 
∆[HbO] over such a wide age range. The main findings include: 
1) The phase difference progresses to  as the PNA increases 
in the infant groups (3-7 days to 3-4 months). This anti-phase 
pattern (i.e. ) persists until late middle age. 2) The coupling 
of ∆[Hb] and ∆[HbO] (i.e. PLI) also peaks in children and adult 
age groups. Then, it decreases in the elderly adults. 3) The noise 
is a non-negligible factor in calculating the phase difference 
between ∆[Hb] and ∆[HbO]. Overall, significant 
developmental changes were observed in these fNIRS 
parameters. The results support the usefulness of hemodynamic 
imaging biomarkers to monitor brain health across the lifespan. 

A. The random noise is a non-negligible factor in calculating 
the phase difference and coupling strength in fNIRS data 
analysis 

The phase difference and PLI between ∆[Hb] and ∆[HbO] 
have been developed as important biomarkers to analyze  brain 
development and cognition [12, 15, 16]. To the best of our 
knowledge, there is no study available that has evaluated the 
effect of noise on the phase difference between Δ[Hb] and 
Δ[HbO] being calculated using the modified Beer–Lambert 
law. In this study, we found that the ∆[HbO] and the ∆[Hb] tend 
to be anti-phase when the  is contaminated by random 
noise. Because of that, we either have to select the signal with 
high SNR or effectively remove the noise for the phase studies. 
B. Tracking brain development using Phase difference 

It has been suggested that phase difference is correlated 
with the cerebrovascular physiology in brain development [11, 
36]. For example, Watanabe et al. [12] have suggested a strong 
correlation between hPod and PNA growth in infants (less than 
6-months-old) in the low-frequency band (<0.1 Hz). It has been 
shown that the hPod progresses to be anti-phase as the PNA 
increases. Furthermore, there is a significant increase of hPodL 

(same as PLI) in the 3-4-month-olds  infant group, compared to 
the neonate group. Consistent with the previous studies, we also 
found that the ∆[Hb] and ∆[HbO] gradually become anti-phase 
as the newborns grow.  

The spatial- and frequency-specificity (hemodynamic 
oscillation frequency) of the phase difference was also 
investigated. Two-way ANOVA and statistical tests confirmed 
the significant phase differences between the age groups. 
However, within each age group, there was no obvious spatial 
specificity. These findings are consistent with those of Taga et 
al.[7], which compared the hPod of neonates (mean PNA: 4.3 
days, range: 2 to 11 days), 3-4-month-olds infants (mean PNA: 
111.6 days, range: 102 to 123 days), and 6-month-old infants 
(mean PNA: 197.0 days, range: 180 to 206 days) channel by 
channel.  

As shown, the phase differences from the 3-4 months to 
the adults are around . Based on the previous studies [12, 15], 
the anti-phase patterns of ∆[Hb] and ∆[HbO] are commonly 
observed in the age groups over 3-4 months [7]. This may be 
related to the development of brain circulation, blood flow, 
metabolic and neurovascular functions [7], and even of the 
synaptogenesis rates in different brain cortices [37]. We 
hypothesize that 3-4 months after birth is an important 
milestone in brain development. In contrast, the phenomenon 
of wide phase difference distribution in the healthy elderly may 
be related to the degenerations of cerebrovasculature, 
neurovascular functions. 

C. Sensitivity of the PLIs index to brain development 
There was no significant frequency-specificity among the 

infant age groups (i.e. early preterm, term, and 3-4 months) for 
the PLI measurement in most of the brain regions. However, 
there were significant differences among the other age groups 
(i.e., children, adults, and healthy elderly) in all brain regions. 
Taga et al.[7] found that the coupling strength (i.e. PLI) of 
∆[HbO] and ∆[Hb] increased in the 3-months old infant group 
compared with the neonate group, over the posterior, but not 
the anterior, in the frequency band below 0.05 Hz. This study 
also found that there was no significant PLI increase in frontal 
or temporal area in the 0.01-0.05 Hz frequency band among the 
early preterm, term, or 3-4-month-olds infant age groups. 
Another study [5] analyzed the correlation coefficient between 
two ∆[HbO] oscillations in the 0.009 Hz to 0.08 Hz frequency 
band. Notable interhemispheric correlations were observed in 
the 3- and 6-month-old infant age groups, compared with the 
neonate group. These studies support that brain development is 
spatial- and frequency-dependent during the early lifespan. For 
the wide age distribution of our study, we found that in frontal, 
left temporal, and right temporal regions, the PLI significantly 

π

π

ODD

π

 
Fig. 7. Arg(∆[Hb])-Arg(∆[HbO]) changes with the increase in the autoregulation in the 0.025 Hz (a), 0.05 Hz (b), and 0.1 Hz (c) frequency points. 
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decreased with age for the populations over 6-year-old. It 
suggests that the PLI of the ∆[HbO] and ∆[Hb] is a potential 
parameter for brain development as well as degeneration over 
the whole lifespan. Moreover, it is known that there is a 
synaptic refinement and pruning with brain development until 
mid-adolescence [38, 39]. The excitatory synaptic strength 
from the prefrontal cortex increases from birth to 
approximately 5 years old (peak), then decreases and plateaus 
at about 18 years old [40]. This trajectory is consistent with the 
changes in PLI. Therefore, our study suggests that the 
hemodynamic changes during resting state may reflect the 
typical developmental trajectory associated with synaptic 
pruning and refinement. 

Unlike functional studies, in which transient changes in 
∆[Hb] and ∆[HbO] (i.e. time series) are crucial, both 
parameters (i.e. phase changes, coupling strength) used in this 
study were averaged values obtained from the whole period of 
resting-state measurements. Therefore, they reflect more on the 
“status” of the brain [12, 13] than the moment-to-moment 
changes due to neuronal activation and physiology (i.e. 
heartbeat). 

D. Possible hemodynamic mechanisms of brain 
development and aging 

A previous study [41] has shown that brain development 
in infants causes the following vascular changes: (1) increased 
blood volume due to growing capillary density; (2) increased 
capillary and venous blood flow; and (3) increased mean 
arterial pressure (limited by cerebral auto-regulation). In 
addition, regional oxygen consumption increases in healthy 
infants during their first year [42]. On the contrary, the aging 
brain includes two distinguishing characteristics: 
cerebrovascular decline and neuronal degeneration, and they 
are interrelated [42]. It is known that aging induces 
hypoperfusion in the brain and blood-brain barrier dysfunction. 
It has also been found that cerebrovascular aging entails (1) 
arterial stiffness, (2) endothelial replicative senescence, (3) 
microvascular rarefaction, (4) narrowing of the vascular lumen, 
and (5) oxidative stress in inflammation [42]. Lastly, these 
changes may influence the cerebral autoregulation function. To 
elucidate the impacts of these underlying changes on the 
observations of phase differences of ∆[HbO] and ∆[Hb] with 
brain maturation, in this work we used a hemodynamic model 
[2, 17, 30, 31]. We identified three main physiological 
parameters that affect the phase lag between ∆[Hb] and 
∆[HbO]: the capillary and venous transit times and the cutoff 
frequency of the high pass filter which models the dynamic 
cerebral autoregulation process. The simulations have shown 
that Arg(∆[Hb])-Arg(∆[HbO]) becomes less negative (i.e. as it 
happens from preterm to adult) for the following changes: 1) 
autoregulation process works better (i.e. higher cutoff 
frequency); 2) the speed of blood flow increases with age (i.e. 
t(c) and t(v) decrease). There are not many studies in the literature 
on the dynamic autoregulation in infants, mostly due to the 
difficulties and risks of inducing controlled variation in blood 
pressure in such populations. Therefore, some studies have 
used transcranial Doppler to measure spontaneous changes in 
blood flow velocity (in main cerebral arteries), following some 
spontaneous abrupt changes of blood pressure. In the study of 
Boylan et al. [43], the authors have measured dynamic 

autoregulation in a cohort of preterm and term babies at risk of 
neurological injury vs. control groups (all of them undergoing 
intensive care). They found that in control preterm, dynamic 
autoregulation was absent, while in control term infants it was 
intact. This finding is consistent with the results of our model. 
About the trend of CBF during different life stages, several 
studies have measured the global or regional CBF from early to 
young adult age. In one positron emission tomography (PET) 
study the authors studied regional CBF in a cohort of human 
subjects from 10 days to 16 years old [44]. In a transcranial 
Doppler study (TSD) the authors studied the total CBF volume 
(ml of blood/minute) in a cohort of children from 3 to 18 years 
old [45]. Both studies came to the same conclusion, that CBF 
increases from an early age to about 7 years of age, and then it 
decreases until about 15 years of age where it reaches values 
typical of adults [45]. The change in CBF is the result of two 
mechanisms: the increased vascular volume and the increased 
speed of blood flow. In the two previous studies, these two 
mechanisms were not disentangled. In another study on infants, 
the authors monitored a cohort of newborn infants in the first 
year of age. They measured increases in regional blood volume 
and flow which was attributed to an increase of capillary 
density. In another work [46], the authors studied CBF in a 
cohort of children (7 months - 17 years old) and adults (19-61 
years old) by using a functional MRI technique (intracranial 4D 
flow imaging). The authors were also able to measure the peak 
velocities in several major arteries of the brain and they found a 
similar behavior with age as that of CBF of previous studies: an 
increase of peak velocity until ~7 years of age and a decrease 
until 18-20 years of age. Typical increase in peak velocity from 
early age until 7 years old was around 20-25%. By assuming 
that a similar increase in speed of blood flow occurs also in the 
microcirculation, we ran our model that (in the frequency range 
0.01-0.05 Hz) predicts an average increase in 
Arg(∆[Hb])-Arg(∆[HbO]) of about 6°. Since the measured 
increased is around 45° from preterm to three months old, we 
conclude that the primary effect of these phase change is the 
development of the dynamic cerebral autoregulation. 

E. The merits of parameters and possible application in 
clinical practice 

As we know, the hemodynamic variations of ∆[Hb] and 
∆[HbO] that derived from fNIRS are the relative changes that 
arbitrarily assigned zero baselines from the start of the 
measurement period based on the modified Lambert-Beer law. 
These raw signals vary between different devices due to the 
difference of technical principles with different systems. It is 
almost impossible to evaluable brain development based on the 
raw fNIRS signals (i.e., ∆[Hb] and ∆[HbO]). In recent years, 
some indices, such as functional connection and brain network 
based on the coupling of ∆[HbO] (or ∆[Hb]) between different 
channels, as well as phase difference and the coupling strength 
between ∆[Hb] and ∆[HbO] within the same channel, have 
been proposed to characterize the brain development and 
degeneration [5, 16]. All these indices could not be affected by 
the different optical path lengths of the measurement channels 
[5].  

Compared to the functional connectivity, the phase 
difference and coupling strength proposed in this study 
investigated the vascular physiology in the brain. There are 
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several valuable contributions to our study which will help 
developing reliable biomarkers in clinical application. Firstly, 
we quantified the influence of the random noise on the indices 
of Arg(∆[Hb])-Arg(∆[HbO]) and PLI. This paved the way for 
reliability assessment. Secondly, the ranges of the indices are 
determined for different age groups. It provides a set of 
‘standards’ for future clinical evaluation. Thirdly, a 
hemodynamic model was used to interpret the underlying 
hemodynamic mechanisms of the changes with brain 
development and aging. Lastly, we have proved that there was 
no significant difference in the indices of phase difference and 
PLI collected by the two fNIRS systems from the same person, 
indicating the robustness of the measurements regardless of the 
system used.  

In relation to neuro cognitive aspect, previous study 
reported that preterm infants tended to show atypical 
hemodynamic pattern in response to phonetic processing as 
characterized by an inverted pattern with decrease of ∆[HbO] 
and increase of ∆[Hb] [47]. Such differential hemodynamic 
response to cognitive activity in preterm neonates may relate to 
immature neurovascular or metabolic system as reflected by 
differential hPod or PLI in preterm neonates. It is assumed that 
PLI could work as a biomarker to assess efficient 
neurocognitive processing and future study should explore this. 

In summary, this study paved a way for clinical 
applications in assessing brain development and aging from 
infants to the elderly. For instance, phase difference grows from 
near π/2 to π during the first 3-4 months of life. The prolonged 
period of growth might indicate abnormal brain development. 
Moreover, the π phase difference persists throughout adulthood 
till the old age in healthy subjects. This can be used to evaluate 
brain injuries, such as traumatic brain injury, stroke, which 
might deviate the value. Similar applications can be found for 
PLI, whose value is significantly higher in children (6-11 years 
old) compared to other age groups. As the immediate next step, 
we need to assess the phase difference and PLI in the 
populations that have brain diseases or developmental 
challenges.  

F. Limitations 
There are several limitations to this study that should be 

mentioned. First, this study used retrospective data from two 
separate experiments. The probe coverage in infants was 
different from that of children, adults, and the elderly. 
However, the spatial specificities of the measurements (Figs. 4, 
S6, and S7) are not obvious. Thus, the differences in the probes’ 
coverage should have little impact on the results. Second, the 
age gaps are too wide for the child, adult, and elderly age 
groups. Mega-analysis will be conducted with more datasets of 
smaller age gaps in the future. Third, the single-distance NIRS 
probes used in this study are known to be sensitive to both 
cerebral and extracerebral hemodynamics. This limitation is 
less significant in the measurements of infants, but the 
anatomical differences between infants, children, and adults 
may themselves introduce age-dependent contributions to our 
results. However, a NIRS study using multi-distance probes 
showed that the measurements at a source-detector separation 
of 3.2 cm (as used in this study) provided the most accurate 
phase measurements of cerebral hemodynamics [48]. Fourth, 
we acknowledge that no other physiological signals were 

measured alongside fNIRS signals. Several studies showed that 
cerebral and systemic physiological parameters are likely to 
interfere. The approach of “systemic-physiology augmented 
functional near-infrared spectroscopy”[49, 50] is helpful to 
reduce the occurrence of “false positives” in the result [51]. 
Moreover, further longitudinal studies on the same individual 
across (periods of) the lifespan should be considered. 

VI. CONCLUSION  
The trajectories of several imaging parameters have been 

calculated from newborns to the elderly. These parameters 
include: 1) the phase difference between ∆[Hb] and ∆[HbO]; 2) 
the phase coupling index. The distinct age-related changes in 
these parameters were found. A new hemodynamic model was 
used to explain these changes with the underlying brain 
physiologies associated with brain development/aging, like 
changes in blood flow and cerebral autoregulation mechanism. 
The model shows that the major effect on the phase is the 
development of autoregulation. As result, this study 
demonstrated that these imaging parameters from fNIRS can be 
used as biomarkers to assess brain health throughout the 
lifespan. 
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